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Abstract. We consider a simple dilute neural network in which the synaptic 
strengths are bounded, and the probabilities of strengthening and weakening the 
synapses during leaming are different. During the sequential leaming of patterns, in- 
trovert networb (i.e. those with synapses more easily weakened than strengthened) 
exhihit recency (i.e. the prefenntial retention of the latest leamed patterns) as in 
the Hopfidd-Parisi model. On the other hand, extravert networks (i.e. those with 
synapses more easily strengthened than weakened) exhihit both recency and the novel 
primacy effect (i.e. the preferential retention of the earliest learned pattems). The 
occuren= of primacy depends on the initial distlibution of the synaptic strengths. 
The relevance of the model to psychological experiments on workng memory is also 
diSCUSSed. 

1. Introduction 

The Hopfield model [l] of neural networks symbolizes the initial succesa of apply- 
ing statistical physics to  models of associative memory [2]. Although this model is 

ral networks such as stable memory within basins of attraction, error tolerance and 
robustness against noise. 

Subsequent improvements to the model have often focused on introducing bio- 
logically motivated modifications, and have usually resulted in more realistic models 
of associative memory. Noting that, for instance, the synaptic strengths cannot be 
a:hit;a:i!y !a:ge, there ha- bee:: propoaa!~ of -&!a xith either bo-nded aynaptic 
strengths [3,4] or with synaptic strengths renormalized during learning [4]. These 
models improve upon the original Hopfield model in a very important aspect: dur- 
ing sequential learning of patterns, the old patterns are automatically forgotten while 
only the most recent ones are recalled, avoiding the state of total confusion when 
too many patterns are stored in the original Hopfield model (the so-called 'memory 

Another development in neural network modelling has been to take into account 
that  in real systems the synaptic strengths are often asymmetric (i.e. Jij # Jji) and 
their connections are diluted 151. This is in  contrast t o  the original Hopfield model in 
which the synapses are all symmetric and fully connected. Extreme dilution, although 
i t  is not obviously in itself more realistic, simplifies the dynamical equations and 
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allows the straightforward study of dynamical as well as equilibriumeffects. Strikingly, 
however, the above-mentioned features of the Hopfield model are still retained. 

In this paper we shall introduce, in addition, another modification to neural net- 
work modelling. From a physiological viewpoint, it is implausible that the mechanisms 
for the strengthening and weakening of synaptic strengths are the same [6]. Thus we 
shall study a dilute asymmetric network in which the bounded synaptic strengths 
are stochastically modified during learning, but the probabilities of strengthening and 
weakening are different. This is in contrast to the Hopfieid-Parisi model [JJ in which 
the modification of synaptic strengths (within bounds) is AJij - .$'(! for the learning 
of the pth pattern, irrespective of whether AJij strengthens or weakens the original 
J i j  (i.e. whether AJij has the same or different sign as Jij). When the synapses are 
more easily strengthened than weakened we can intuitively call the system a stubborn 
or extrovert network; otherwise it is termed stupid or intmuerl; and that with equal 
ii'neiiness ior sirengihening and weakening we caii normai. To avoid iinguisiic ambi- 
guities we shall call the three cases extrovert, introvert and normal, which describe 
their tendencies towards stronger, weaker or normal synaptic strengths respectively. 
In order to focus on the phenomenological aspects of the model, we simplify the math- 
ematical analysis by restricting the synaptic strengths to take the values f l  and 0. 
Naively simple as it seems, the model already shows interesting features which have 

synapses taking a wider, or even continuous, range of values [7]. 
The phenomenology concerned in this model is the study in experimental psychol- 

ogy of working or short-term memory. The term working memory implies a system 
with limited capacity, for the temporary holding and manipulation of information dur- 
ing the performance of a range of cognitive tasks such as learning and retrieval [8]. 

of items presented serially [9]. I t  is found that the probability of recalling an item 
depends on the serial presentation position. The increased probability of recall for the 
earliest learned items is called the primacy effect, whereas the recency effect corre- 
sponds to the increased probability of recall for the latest learned items. 

Starting from tabula rasa (i.e. all the synaptic strengths are initialized to zero), 
-e sha!! demonstrate that introvert netwrks exhibit recency but not prirxzcy effects, 
which is qualitatively similar to the Hopfield-Parisi model. On the other band, ex- 
trovert networks behave differently. The dnbula FUSO initial condition ensures that the 
earliest patterns are always learned by the strengthening of the synapses, since no 
previous information is present. Later patterns are then less well embedded in the 
network because they may require changes in the direction that weakens the synapses, 

mechanism due to pattern interference, extrovertness contributes another factor to- 
wards the deterioration of memory span when patterns are learned sequentially. As 
we shall see, these two factors are responsible for the presence of both primacy and 
recency effects in extrovert networks. We shall also demonstrate the inherent limited 
capacity of our three-state mode!, with patterns stored only temporarily as learning 
proceeds. Our mode! is thus a p!a.usih!e candidate for a working memory, although its 
relationship to experimental psychology is far from Straightforward, as is later brought 
out. 

It is important to stress, however, the dependence of the primacy effect on the 
initial configuration of the synaptic strengths. A pre-requisite for the presence of 
primacy is that the initial distribution of synaptic strengths should be different from 

. ... . 

p~enoineno~ag~ca: These features ate aiso yrmeni in mode;s with bounded 

Pa:tic.;!& :e!euaEt a:e expe;imeEt8 iE .:Jhich tg, -.bject is ;eqi;i;ed tG :ec$! a !isat 

nhich %re more difficult. i. exirovert networks. Thus, on io:, of the usua! forgetting 
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the asymptotic distribution after a large number of patterns have been learned. Fur- 
thermore, the initial distribution should be such as to enable a pattern to be better 
embedded in the network as compared with embedding it in the asymptotic distribu- 
tion. This implies that for an extrovert network to exhibit primacy it must have an 
initial distribution weighted more towards the centre than the asymptotic distribution. 
In particular for the three-state model we study here, this requires that a sufficiently 
large fraction of the synaptic strengths should be initialized to zero. This dependence 
on the initial configuration is also studied in this work. 

2. Themodel 

The model we consider bas a structure analagous to the diluted asymmetric Hopfield 
model introduced by Derrida el a/ [5], but with differently chosen synaptic weights. 
I t  consists of a network of N binary neurons ui = f l  (i = 1 , .  . . , N) with synaptic 
interactions chosen as follows. Independently for each (ij) permutation, a synapse 
from j to i is present with a small probability, C / N ,  so that the average number of 
neurpns feeding any other is C. Equivalently, the synaptic efficacy from j to i is given 
by J . .  $3 = JijCi,, where the C, E {0,1} are independent parameters chosen at random 
according to  the distribution 

(1) 
C 
N ~ ( C i j )  = --6(Cij - 1) + (1 - C/N)6(Cij)  . 

C is chosen so that C << In N and the limit N - cc is taken in the analysis. This 
restriction on the average number of connections ensures that in any finite number 
of steps of the dynamics, any neuron almost never receive inputs from itself, even 
indirectly. Correlations between the neurons are thus eliminated, and it is this sim- 
plification that allows for an exact solution of the dynamics. 

The synapses that are present are restricted to take one of the values f l  or 0. 
Starting from tabula MSQ (i.e. all Ji j  are initialized to zero), random patterns {<:}E1 
(where (f denotes the value of neuron i for pattern p )  are learned at  the rate of one 
pattern per unit learning time. Since the synapses can only take a finite number of 
values, the system can only store a few patterns if all the synapses are updated during 
the learning of a pattern. Thus each pattern is learned by randomly choosing only a 
fraction f of the synapses, and stochastically updating the chosen synaptic strengths 
Ji j  by a n  increment .$(! = 5 1 ,  except when such an increment is not allowed by the 
synaptic bounds. The probabilities of updating are pr and p ,  if the increment </(! 
has the same or opposite sign as the synaptic strength J i j  respectively. Thus p, and 
p, are the registration (or strengthening) and correction (or weakening) probabilities. 
In the present tbree-state model, p, effectively adjusts the likelihood of change from 
the synaptic values f l ,  while pr  modifies change from 0. If pJp, < 1 the network 
is termed extrovert, with synapses resisting change from the values f l ,  if p ,  f p ,  > 1 
it is termed introvert, with synapses biased towards 0 and if p,/p, = 1 it is referred 
to as normal. Each pattern of a particular sequence of patterns is then learned in 
turn in this manner, thus determining the values of the synapses at  any time. In 
fact, as we show below, the properties of the network depend on (f,p,,p,) only in the 
combinations fp,, fp,. We find it convenient conceptually, however, to think in terms 
ofpC,pr U 0 ( 1 )  with any c-dependence contained in f. 
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It  is convenient to study the retrieval properties of this system by considering the 
probability distribution of the synaptic strengths. Let P:, Po”, P! be respectively the 
probabilities of J i j  being in the states +1, 0, -1 after p patterns have been learned. 
The probabilities before and after the learning of the pth pattern are related, when 
(/.$ = f l  respectively, by the matrix equation 

PWij = [(I - f)l + fT*IP(P - 1)ij 
where the matrices T, are given by 

0 l - P c  0 
T + =  i: 0 1 - P ,  1 1 - p ,  P, ) 

T - = (  ; 1;; 8) 
and P ( p ) i j  is the transpose of (P,”,P,,P!). 

For the retrieval stage we consider either synchronous or asynchronous dynam- 
ics for the network [5 ] ,  taking the post-synaptic potential thresholds to be zero and 
ignoring synaptic noise, so that at retrieval time t an  updating event is defined by 

ui(t + 1) = sign(hi(t)) synchronous (3Q) 

ui(t + Ar) = sign(hi(t)) asynchronous (36) 

h i ( t )  = Jijuj(l) . (4) 

or probabilistically with updating occuring with frequency A7-l according to 

where h i ( t )  is the local field, or post-synaptic potential, on neuron i and is given by 
N 

j = 1  

We are mainly interested in the asymptotic retrieval behaviour of the system, so both 
synchronous and asynchronous dynamics would give the same result in the present 
model. 

We consider the time evolution of a state of the network having a macroscopic 
overlap m with a specified pattern p 

and a microscopic overlap with all other stored patterns. As shown by Derrida and 
Nadal [lo], m(t) asymptotically approaches the fixed point m* of the equation 

m; (6) 
where g is given in the limit of C - CO (but still with C < InN) by 

where A, is the noise-to-signal ratio 

with A, and D, given by the following averages over the randomly stored patterns: 

A, = ((/( ,!’Jij)  D, = ( J ; )  . (9) 
Determination of the storage properties of the network then follows from an analysis 
of equation (6). 
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3. Solution 

9.1. Derivation offized point equation 
Consider the retrieval properties of the (r+ 1)th pattern when s further patterns have 
been learned (i.e. at the learning time T = r + 1 + s). We proceed to calculate the 
probability distribution of the Jij for such a sequence of patterns, and hence determine 
equation (6), by considering the average effects of the first r and last s patterns, and 
the explicit eKect of the marked (r + 1)th pattern. These averages are applicable as 
the strong dilution present in the model ensures that correlations between the Ji j  can 
effectively be ignored. 

Ttaining the first r patterns starting from tabula ~ S Q ,  and averaging over the 
random choice of those patterns, gives the probability distribution of the Jij from 
equation (2) as 

Here T is defined as a 3 x 3 matrix relating the probability distributions at adjacent 
stages of the training procedure. Thus Pi;) can be expressed as a linear combination 
oi the junnormaiizedj eigenvectors e,, e2, e3 oi i, where 

e I -  -- 2;R ( k )  e z =  ( !l) e3= (I;) 
with eigenvalues of 1,1 - $ R E  and 1- $(2+R)E respectively, R p,/p, and E fp,. 
As we shall see, the e2 mode is associated with the evolution of the signal strength 
of the marked pattern, and the e3 mode with the evolution of the synaptic weight 
distribution due to  the unmarked patterns. We shall call E the learning intensity, 
since i t  measures the intensity with which patterns are stored in the direction of 
strengthening the synapses. Equivalently, the network behaviour depends on both the 
registration and correction intensities E, E fpr and E, 3 fpc respectively; here we 
have chosen E E E, and R E EJE, = pJp, as independent variables to facilitate 
discussion. Furthermore, we shall consider fp,, fp, Y O(l/@), for reasons to become 
evident later. 

For sufficiently small fp,, fp,, we may easily evaluate Pi;) by using the approxi- 
mation (l+zy = exp(rz). Then introducing the ( r+ l ) th  pattern into the probability 
distribution explicitly, and considering the effect of the next s patterns in a similar 
way to the first r patterns, we find that 

~ ( r + ' + ' )  = e, +ti rtl <, rtl 
E 

{2R + (2 - R) exp[-$(2 + R)Er]} exp(- iREs)e2 
11 2(2 + R) 

E 
2 + R  

A,,, = E l f  '(;+'e2 . P!;tlta) - - -{2R+(2-R) exp[-$(2+ R)Er]) exp(-iREs) 

(12) 

(13) 
rt1ts)- 2 -{l-exp[-?(2+R)E(r+s)]} +O(E)  

2 + R  D,,, = (1 0 1). Pjj - 
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and the noise-tesignal ratio in (8) becomes 

4 2 ( 2  + R){1- exp[-+(2 + R)E(r  + s)]) 

Artl = a E { 2 R +  (2 - R)exp[-$(2+ R)Er]}exp(-$RES) ’ 
(14) 

Substituting A?+, into equation (6) gives the fixed point equation which determines 
the retrieval behaviour of the network. 

Before beginning the formal analysis it is worth noting the terms that will deter- 
mine the broad nature of the network’s storage properties. We see that  the noise-to- 
signal ratio is dependent on three factors. The signal term A,,, of the marked pattern 
decays exponentially with s on a ‘time’ scale of 2/RE,  since it is associated with the 
e, mode. This decay is due to the interfering effect of the subsequently stored patterns 
when the synaptic strengths are bounded. (Note that the signai term wiii not decay 
when the synapses are unbounded; all the stored patterns are simply confused when 
the storage capacity is reached, constituting the so-called ‘memory catastrophe’.) 

Secondly, the pre-factor of the signal term, {2R+(2-R) exp[-f(2+R)Er]]/(2+R), 
reflects how favourable the synaptic distribution, at the instant immediately before 
the marked pattern is learned, is for the marked pattern to be embedded. Its value 
evolves from 1 to  2R/(2 + R) on a ‘time’ scale of 2/(2 + R)E as learning proceeds. 
For extrovert networks (R < l ) ,  this means that earlier learned patterns are better 
embedded than later ones, because earlier learned patterns result in more synaptic 
updating when the synaptic distribution is weighted more towards the centre. 

Finally, the noise term D,,, grows with the total number of stored patterns. Its 
value increases from 0 to its maximum value, again on a time scale of 2/(2 + R)E 
associated with the e3 mode. It is the non-triviai interpiay of these three factors that  
gives rise to  the novel effects that  are outlined below. 

3.2. Analysis of f ixed  point equation 

We shall first consider the memory lifetime L(r) when r patterns have previously been 
presented (i.e. of the (r + 1)th) pattern. This is given by the value of s when the 
pattern is just forgotten (no longer retrievable), and hence by considering the solutions 
of equation (6) in the limit m:+l -+ 0 (i.e. the solutions of g’(0) = 1). Thus L(r) is 
given by the value of s for which A,,, = m. This is equivalent to the equation 

,/l - exp[-$(2 + R)E(r  + L(r))] 

{1+ [ (Z-  R)/2R]exp[-$(2 + R)Er]}exp(-$REL(r)) 
- ( iSj  E 

E’ 
_ -  

where 

In the limit of r -+ 00, that  is once the memory has been saturated, the ( r+  1)th 
pattern is forgotten after an additional L(o3) patterns have been stored, where 
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L(co) is thus the asymptotic storage capacity of the network. I t  reaches its maximum 
at E = eE', and the maximum storage capacity is O(@). 

This storage capacity is clearly drastically reduced in comparison to the more 
usual value of O(C) for other dilute networks. This is not simply a consequence 
of the synapses taking only three values, but also of the sequential nature of the 
training procedure for storing patterns. For example Sompolinsky [ll] has considered 
a comparable recursive network with fully connected synapses. In it the synapses 
are unrestricted until they have been fully trained, after which they are clipped to 
the values f1,O. The capacity is then of the same order as a model without such 
restriction on the magnitude of the synapses. It does, however, suffer from the same 
total collapse of memory beyond the critical capacity. What is surprising about our 
model, however, is that  the retrievable storage capacity is as high as i t  is, given the 
degree to which information about earlier patterns is lost as new patterns are stored. 
Furthermore, such limited capacity need not be regarded as restrictive as it is an 
integral part of any model of working memory. 

If we choose the intensity as a higher power of C than C-1/2, the capacity L(m) 
is then smaller. For example E - O(l) ,  corresponding to f - O(1) for p , , p ,  - 0(1), 
would imply L(m) - O(1nC). This dependence on the learning intensity reflects 
further the difference between sequential presentation to a bounded synapse system 
and the effects of eventual clipping of synapses after presentation to an unbounded 
system. 

In the limit of r -+ 0 equation (15) reduces to 

E 4 1  - exp[-f(2 + R)EL(O)] 
E' [(2 + R)/2R]exp(-$REL(O)) 
_ -  - 

which determines the lifetime L(0)  of the first learned pattern. Figure 1 plots the 
rescaled lifetimes X L / @  of the first pattern and of any pattern stored after 
the asymptotic capacity has been reached, against the rescaled intensity E E@ 
for a normal (R = 1) network. Clearly there is a critical value of the intensity, 
€ 8  = J (2+ R)*/2R, below which the network fails to store any more than the first 
few patterns, which are themselves lost as training continues. A similar critical value 
of the intensity with which patterns are stored is seen in the work of Mkzard et 
a1 [5]. Note that the lifetimes first increase with E ,  reach their maxima and then 
decrease. Thus, for sufficiently small E ,  the patterns are better embedded as the 
intensity increases, but pattern interference degrades the lifetimes when the intensity 
is excessive. 

9.9. Above threshold intensity 

We first consider the case E > E * .  For a fixed value of c, we plot in figure 2 the 
lifetime of each pattern in the sequence as a function of the rescaled learning position 
p E p/&for extrovert, normal and introvert networks (extremely introvert networks, 
tha t  is with R > 2, are discussed separately in section 3.5). 

We see, for the cases considered here, that patterns learned at  the start are re- 
membered for longer than patterns learned later on, whose lifetime monotonically 
decreases to a constant value. This is due to the increasing pattern interference as 
learning proceeds, and is also observed in previous models [4,10]. What is ofparticular 
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E 

Figure 1. Curve (I gives the lifetime X E L / f i  of the first stored pattern as 
a function of e, the intensity of storsge, for R = 1. The lower curve b gives the 
corresponding lifetime for a pattern stored alter the memory has been satumted. 

0.3  

O 2  0.1 t 
0 1  

0 2  0 4  06 0 8  1 0  1 2  1 L  

P 

Figure 2. The Lifetime X z L / f i  for R = 0.5.1,2 and 5 (curves o , b , e  and 
d respectively) is given IU a function of p E at c = c,b.(R) E (0.75 + 
0 . 5 R - 1 ) e d m ,  which is arbitrarily chosen to ensure that the novel effects 
are easily observable. 

interest, however, is the rate of this decrease in pattern lifetime. We see by partially 
differentiating equation (15) with respect to p ,  and evaluating at p = 0, that 

Z(2- R)+(3R-2)exp[-$(2+R)tX] 
2R+(2-R)exp[-$(2+R)cA] 
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Clearly if R < 1 we see that aA/ap( ,  < -1. Thus for an extrovert network the rate 
at which the pattern lifetime decreases is faster than the rate at which new patterns 
are stored, until we reach pattern p,,, where aX/apl,, = -1. Here po is given by 

= (2 + R)c I n ( 9 )  

This ensures that, for a certain period within the training procedure, the patterns at 
the start of the sequence may be stored for longer, and retrieved with a higher output 
overlap than patterns in the middle, some of which may be entirely forgotten. 

The extent of this effect, which we term the primacy effect, and its absence from a 
normal or an extrovert network, is evident in figure 3. This indicates the stages of the 
training procedure for which each pattern may he retrieved, as a patttern learned at 
the rescaled time p is retrievable in the learning time interval r enclosed between the 
curves r = p and r = p+ X(p). The positions p of the patterns still memorized by the 
network at a learning time, say z, are determined by the segment of the horizontal 
line r = z enclosed in the area bounded by the two curves. 

20 

18 

16 

1 4  

12  

10 

0 8  

06 

0 4  

0 2  

0 

P 

Figure 3. The curves T = p + A(,) for R = 0.5,l and 2 (a, b and c respectively), at 
e = eOa.(R) and the Line T = P. plotted against p. 

As indicated by curves b and c for normal and introvert networks (R 2 l) ,  all the 
stored patterns are retrievable for r 5 X(0). The forgetting of patterns, starting from 
the earliest learned ones, takes place when r > X(0). The latest patterns are recallable. 
We call this the recency effect, which is already observed in previous models [4, lo]. 
No primacy eEect is present. 

For extrovert networks (R < l),  curve o. shows that all the stored patterns are 
retrievable up to the learning time r, E po + X(po). As learning proceeds further, 
patterns in the middle positions around po start to be forgotten. This continues until 
the learning time X(O), when the first pattern is forgotten. Beyond X(O), only the 
latest learned patterns are retrievable. The preferential retention of memory of the 
earliest learned patterns between ro and X(0) is the primacy effect. 
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Even before forgetting sets in a t  the learning time r,, the primacy phenomenon 
is already present in the quality of retrieval as a function of patterns presented from 
the start  of training, and persists up  t o  the learning time X(O), when the first pattern 
is forgotten and the primacy effect vanishes. These characteristics are indicated in 
figure 4, which gives the retrieval quality of each pattern at several stages in the 
training procedure. 

P 

Figure 4. The retrieval overlap m as a function of p ~/fi at e = coba(R) 
and for R = 0.25, at a stage in the training procedure (a, b )  hetween r = po and 
r 70 = po+X(po) ,  ( c )  at I = r0 and ( d )  hetween 7 = 70 andr = X(O), respectively. 
The end points of each curye indicate the leaming position of the last leamed pattern; 
their dnvelope is given by the monotonically decreivling dotted line. 

We note that the primacy effect is dominant for learning times r below p o ,  so 
that the retrieval quality of a pattern is monotonically decreasing with its position p .  
Recency effects set in, for r greater than p , ,  when the retrieval quality monotonically 
increases thereafter. The pattern position for this onset of recency improvement is 
independent of r ,  and is always a t  p,. 

Finally we derive the rescaled storage capacity a % p/@, where p is the number 
of retrievable patterns stored in  the net,work, ils a function of the learning time. For 
an extrovert network there are three regions. 

(i) 0 < r < ro; each stored pattern can be retrieved until r,, when forgetting first 
starts, and hence (I = r. 

(ii) ro < r < X(0); between these times the patterns from positions p< to p >  
are forgotten, where p< and p> are the two solutions of r = p + X(p). Hence (I = 
T - p, + p < .  This is the region where both primacy and recency effects are present. 

(iii) X(0) < r; after X(0) only the recency effect is present with p1 patterns forgot- 
ten, where p1 is the single solution of r = p + X(p), and all later patterns retrievable. 
H e n c e a = r - p l .  

The storage capacity a is plotted as curve a of figure 5; note the presence of three 
distinct regions. Figure 5 also shows the corresponding storage capacity for the normal 
and introvert networks, for which ~ n ! g  t.vo regions exist a no primary effect is present. 
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0 2  :::F 
Note the similarity of these curves b and c in figure 5 with those of [5] and [lo]. 

3.4. Below threshold infensily 

Next we discuss the  case of an extrovert network when E < E * .  In this case patterns 

ceeds, until eventually no patterns can be learned by the system. Hence no extended 
memory is possible. However, even in this regime, an extrovert network shows inter- 
esting behaviour, as demonstrated in figure 6(b) - (d) ;  curve a is for E > E* and is for 
comparison. 

For c just below E* (curve b), the network exhibits both primacy and recency 
effects, dthoogh the recexy effect in  this cme is restricted, a d  pztterns cannot be 
learned indefinitely. As learning proceeds, the patterns in some middle position are 
the first ones to be forgotten, and the latest learned ones are the last to be forgotten. 
We call this a stronger recency (SR) regime, as the recency effect persists longer than 
the primacy effect. 

For lower values of c (curve c), the network continues to  exhibit both primacy 
and (restricted) recency effects. Forgetting still starts in some middle position, but 
the earliest learned patterns are the last ones to  be forgotten. We thus call this a 
stronger primacy (SP) regime, as the primacy effect now persists longer than recency. 
For still lower values of E (curve d) ,  the network exhibits primacy effect only (PO). 
Forgetting starts from the latest learned patterns, until eventually the earliest ones 
are forgotten. These three regimes for different values of E ,  along with the region of 
extended memory [EM) for E > E':  are shown in figure 7. 

In the limit of extremely small E, patterns are still faintly memorized in the diluted 
model. More interestingly, the slope aXlap approaches -1 for all the memorized 
patterns. This implia that all the patterns are forgotten almost simultaneously a t  the 
same learning time, thus recovering the situation of memory catastrophe reminiscent 
of the Hopfield network without synaptic bounds. Indeed, when E is small, updating 

~ " "  h.. 1----..,4 - A  rh. .  :-:<:"l -&..-- h..& -11 - P I L - . - -  ... : I I  h- C ---- 11-_ "- I ---": _ -__  ~ 
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Figure 6. The c-6 T = p + X ( p )  for 6 = 3.0,1.7.1.2 and 0.5 (curves (I, b.c  and d 
respectively). with values of c chosen so as to highlight the corresponding regimes of 
extended memory (EM),  stronger recency (Sn), stronger prk”y (sP), and primacy 
only (PO)) when R = 0.8, and the line T = p ,  plotted against p. 
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Figure 7. Memorv behaviour in the space of the ratio R and intensity E ,  showing 
the regimes of extended memory (EM),  stronger recency (SR), stronger primacy (SP) 

and primacy only (PO). 

events for each synapse become very sparse during the period when learning takes 
place, and the effects of synaptic bounds become vanishing. This causes the learning 
behaviour of the network to approach that of the unbounded network 
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9.5. Eztremely eztroveri networks 

The case of very extrovert networks deserves special attention. When R << 1, eqna- 
tion (15) can be modified into 

As before, the system does not exhibit extended memory below the threshold intensity 
e* - m / R .  However, the system has interesting behaviour even in this regime, 
provided that c > m. Here the lifetime i n  the early and later learning stages 
behave differently. In the early learning stage, patterns are efficiently embedded, and 
t,he ext,reme resilience agahst weakening the synapses prmerves t,he learned patterns 
in subsequent learning time. Thus the lifetimes are long and X - O(Rc)-'. Precisely, 

The lifetime decay is caused by the increasing ineffieciency in embedding later learned 
patterns, and has a slope of -2/R. 

When p - E-' l n ( c / m ) ,  the network behaviour crosses over to a regime of 
short lifetime, where X - O(c)-' .  Rere the synaptic weights are already fixed by 
the network's previous learning experience, and the extreme resistance to weaken the 
synapses prevents the efficient embedding of newly learned patterns. Thus 

A = -(l/e)h[exp(cp) - ( 2 e 2 / r )  exp(-cp)] . (22 )  

The lifetime decay has aslope of O(1), meaning that the patterns learned at  this stage 
are forgotten in a nearly catastrophic way, leaving the earlier learned patterns with a 
much ionger span. Patterns with positions p 2 p(0j cannot be iearned, where 

__.. When ii = 0 exactiy, patterns with positions p 5 pimj have infinite iiietimes, 
where 

p(m)  = c - ' I n ( c / & T )  (24) 

and patterns with positions p ( m )  < p < p ( 0 )  have finite lifetimes. This mems 
that the network exhibits permanent primacy, similar to models of long-term mem- 
ories [lo, 12,131. The long lifetimes of the early learning stage discussed above can 
therefore be considered as a precursor of permanent primacy. Permanent primacy is 
previously observed in the nonlinear model of Burgess et a1 [14,15]; the existence of 
the 'point of no return' therein is the equivalent of our absolute extrovertness R = 0. 
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9.6. Eztremely infroveri nefworks 

Novel effects are also revealed for sufficiently introvert networks. We see in curve d of 
figure 2 that the pattern lifetime steadily increases as patterns are learned, towards 
its asymptotic value. The maximum storage capacity is thus no longer given when 
forgetting starts, but is instead effectively given when a large number of patterns have 
been stored, as indicated in the lowest curve of figure 5. A simple analysis of equation 
(15) reveals that  this new behaviour is present only if R > 2 and the intensity c is 
strong enough. Indeed, for an introvert network, information is better embedded when 
the synaptic distribution is weighted away from the centre. Starting from tabula rosa, 
this condition can only be attained at  a later stage of the training procedure, thus 
accounting for the longer lifetimes of the latest learned patterns. This interpretation 
is apparent in the change of behaviour in the signal term in (12) when R becomes 
greater than 2. 

4. The origin of the primacy and recency effects 

As an alternative to  starting the training procedure from labula rksa we now consider 
starting from synapses with an arbitrary symmetric initial probability distribution 
having a fraction pa of zero synapses, with an aim to analysing how this new condition 
modifies the primacy and recency effects. 

Clearly the asymptotic distribution of the synapses after a large number of patterns 
have been stored will remain the same whatever the starting conditions. I t  is also 
manifest that  if we started from this asymptotic distribution no primacy effect would 
appear as this would be equivalent to storing patterns in the limit r - 03 of section 2,  
where no  primacy effect is present. This would be the case no matter how extrovert 
the network is. 

Performing an analysis similar to that of section 3, we find that the condition 
for the appearance of the primacy effect, namely that the rate at which the pattern 
lifetime decreases for the earlier patterns is faster than the rate a t  which new patterns 
are stored (i.e. aA/apl,,o < -l), is given by 

2PO R <  - 
1 + Pa 

thus ensuring the onset of the primacy effect only if the network is sufficiently extra- 
vert. Alternatively, for a fixed value of R, the initial distribution po for the onset of 
primacy has to be greater than R / ( 2 - R ) ,  which is in turn greater than the equilibrium 
distribution R/(2  + R). 

Clearly the primacy effect is dependent on the proportion of synapses that are set 
to 0 at  the start of training. If this is greater than the asymptotic proportion after a 
large number of patterns have been stored then, for a suitably extrovert network, the 
primacy effect is present. This may be accounted for by noting that in an extrovert 
network the synapses resist change from the values 4=1 and thus the earliest learned 
patterns will determine the signs of the initially zero-valued synapses whose change 
are resisted during the learning of later patterns. These earliest patterns are thus 
remembered for longer than they would be otherwise. This, when combined with the 
decrease in pattern lifetime due to the noise induced as more patterns are stored, 
accounts for the origin of the primacy effect in our model. 
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The source of the recency effect is apparent in that the nature of the training 
procedure ensures that information about the earlier patterns is gradually lost, with 
the most recently learned patterns better embedded among the values of the synapses. 

5. Conclusion 

We have studied a model of working memory with variable registration and correction 
probabilities, and have found that extrovert networks (in which registration is stronger 
than correction) exhibit both primacy and recency effects during sequential learnin 
of patterns, when the learning intensity is sufficiently strong (on a scale of order 1/ / C 
where C is the connectivity) and the initial distribution of synaptic strengths is bi- 
ased towards weakness compared with the asymptotic limit. On the other hand, only 
recency effects are present in normal and introvert networks (respectively with equal 
registration and correction probabilities and correction diminished). The exhibition 
of both primacy and recency effects for a learning session parallels psychological ex- 
periments on working memories. 

When compared with our model, most of the previous models exhibit either mem- 
ory catastrophe beyond storage capacity [Z]: or purely recency effects [3,4!. There 
have also been models in which purely primacy effects are present. An example is the 
‘irreversible bounds’ (or ‘absorbing bounds’) model [lo, 12,131, in which the synaptic 
strengths stick to the bounds once they are reached. This model has a limited memory 
storage, in which learning of new patterns is impossible after a sufficient number of 
patterns have been learned sequentially, thus it serves as a plausible model for long- 
term memory. In fact, it is equivalent to the extremely extrovert limit (R -+ 0) in our 
model. Another example is the nonlinear model by van Hemmen et a1 [16], in which 
the learning rule is defined by some nonlinear function 6, so that 

I n  the c*pe (d considered in  [Ifi]$ on!? t,he primacy pffed is present; and it can be 
shown that the particular form of the function 4 has  the property that patterns are 
better embedded in the strengthening than the weakening direction. It is apparent 
that in these models, the primacy effect is related to the extrovertness inherent in  the 
synaptic learning rules. By varying the ratio R = pc/pr, our model incorporates these 
models as special cases and, furthermore, extends to models with both primacy and 
recency effects present. Sequential learning in general nonlinear models, in which both 
primacy and recency effects are present, are also currently being studied by Burgess 
el a/ [14,15]. 

Concerning the variation of the storage capacity during sequential learning, pre- 
vious studies have consistently found that the storage capacity rises linearly with 
learning time, reaches a maximum and then approaches an asymptotic level (for ex- 
tended memory) or drops to zero (for restricted memory). Our study has revealed a 
much wider variety of behaviour when the ratio R and the intensity E are varied. In 
the primacy regime we have found that the storage capacity has two kinks instead of 
one, one corresponding to the moment when forgetting starts, and the other t o  the 
moment when the earliest or the latest learned patterns are all forgotten. In the re- 
cency regime, we also found instances in which the storage capacity further increases 
after the moment when forgetting starts, and so we see that the kink does not always 
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give the maximum storage capacity. By varying also the initial synaptic distribution, 
other behaviours are likely to be revealed. 

We have also emphasized the relevance of a favourable initial synaptic distribution 
to the occurence of primacy. For symmetric distributions, we have shown that the 
initial distribution has to be comfortably distinct from the equilibrium distribution, 
in such a way that  the earliest patterns are embedded in the synapses with sufficient 
advantages over the latter ones. In the three-state model, this means that the initial 
fraction of zero synapses for the occurence of primacy should not merely be greater 
than the equilibrium fraction R / ( 2  + R), but greater than R/(2  - R) as well. 

The importance of favourable initial distributions distinct from the equilibrium 
distribution of synaptic strengths leads to an interesting issue. If we take a neural 
network which has undergone learning for a long time, its synaptic strengths will 
reach the equilibrium distribution, and the system will show no primacy behaviour in 
a new but equivalent learning exercise. Surely some discontinuity in the subsequent 
synaptic strength distribution is required to demarcate the starting of a new learning 
session. A possible mechanism for a favourable resetting of the distribution is that  the 
synaptic strengths relax randomly to zero when learning stops. Another possibility 
is that  the necessary discontinuity in the learning environment is inherent when a 
learning session consists of correlated patterns whose correlations are different from 
the previous ones. These ideas deserve further investigation. 

Alternative explanations of the primacy effect exist. I t  is possible that the net- 
work has a high ‘attention’ at the beginning of a learning session, and thus the earliest 
learned patterns are embedded with a stronger intensity E. As learning proceeds, the 
attention is lowered and the intensity approaches an asymptotic value [17]: The rel- 
evance to psychological phenomena of this attention theory, as well as the extrovert 
theory proposed here and in [14,15], has to be subject to comparison with differenti- 
ating psychological experiments. While both theories may eventually be relevant to 
psychological phenomena, it would be interesting to predict, for example, the con- 
sequences of presenting nncorrelated patterns among a majority of correlated ones 
during a learning session, while keeping the attention constant. Another current com- 
mon explanation within experimental psychology for the primacy and recency effects 
is through an interaction of short- and long-term memory [9]. This interaction has 
been incorporated into a neural network that has been outlined and simulated by 
Schreter and Pfeifer in [18]. 

There are other more subtle aspects of the psychological phenomena of primacy 
and recency. One experimental result can be termed the quenching of primacy [9]. 
In this experiment, the subject is required to rehearse an item several times before 
the next one is presented. In this case, no primacy effect is present. The analogue of 
rehearsing in our model lies in increasing the learning intensity E. Roughly speaking, 
we observe similar consequences, For the extrovert network, we see that primacy 
effects are more dominant for low-intensity learning, whereas recency effects are more 
dominant for high-intensity learning. The temporal extent of the primacy effect is 
determined, roughly speaking, by the magnitude of the position po, which is inversely 
proportional to the intensity E according to equation (19). For sufficiently introvert 
networks, we even witness an increasing lifetime with pattern position for sufficiently 
high intensity, implying the opposite of primacy. However, we have not found any 
extrovert network which has both primacy and recency effects at low intensity but 
has primacy behaviour completely washed out at  high intensity. 

Another experiment can be termed the quenching of recency [9]. In this experi- 

K Y M Wong et  a l  
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ment, the subject is required to perform some interfering task immediately after the 
learning session. Afterwards, only primacy but no recency effect is present. If we as- 
sume that the interfering task corresponds to further presentation of random patterns 
in our model, this would correspond to the observation that out of all the patterns re- 
callable up to a learning time p,  only the first few are retrievable a t  a time later than p. 
This is clearly observed in comparing curves b and d in figure 4: the retrieval overlaps 
of patterns o n  curve b become 0 on the corresponding portion of curve d ,  except for 
those learned earliest, and surely recency is absent. However, psychology experiments 
imply that the pattern position po of minimum overlap, i.e. the position for the onset 
of recency improvement, should shift in the increasing direction as learning proceeds, 
and this more subtle aspect is not observed in the present model. 

Our model is of course idealized. The detailed updating mechanism need not be 
redrirterl to t,hP ._.- r tnrhaat i r  Hehhian --"I" .-.. nnp U I P  have rhosen ".._" -.., nor nppA the _.." sgnspnses be 
discrete [7]. However, we believe that our simple study demonstrates that bounded 
synapses, with different probabilities for increase and decrease of their magnitudes on 
learning, are likely to be key ingredients in any self-contained model of short-term 
memory. 
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