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Abstract. We consider a simple dilute neural network in which the synaptic
strengthe are bounded, and the probabilities of strengthening and weakening the
synapses during learning are different. During the sequential leaming of pattems, in-
trovert networks (i.e. those with synapses more easily weakened than strengthened)
exhibit recency (i.e. the preferential retention of the latest learned patterns) as in
the Hopfield-Parisi model. On the other hand, extrovert netwarks (i.e. those with
synapses more ¢asily strengthened than weakened) exhibit both recency and the novel
primacy effect (i.e. the preferential retention of the earliest learned patterns). The
occurence of primacy depends on the initial distibution of the synaptic strengths.
The relevance of the model to psychological experiments on working memory is also
discussed.

1. Introduction

The Hopfield model [1] of neural networks symbolizes the initial success of apply-
ing statistical physics to models of associative memory [2]. Although this model is
obviously far from realistic, it does reproduce qualitative features of biological neu-
ral networks such as stable memory within basins of attraction, error tolerance and
robustness against noise,

Subsequent improvements to the model have often focused on introducing bio-
logically motivated modifications, and have usually resulted in more realistic models

of associative memory. Noting that, for instance, the synaptic strengths cannot be
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strengths [3,4] or with synaptic sttengths renormalized during learning [4]. These
models improve upon the original Hopfield model in a very important aspect: dur-
ing sequential learning of patterns, the old patterns are automatically forgotten while
only the most recent ones are recalled, avoiding the state of total confusion when
too many patterns are stored in the original Hopfield model (the so-called ‘memory
catastrophe’).

Another development in neural network modelling has been to take into account
that in real systems the synaptic strengths are often asymmetric (i.e. J;; # J;;) and
their connections are diluted [5). This is in contrast to the original Hopfield model in
which the synapses are all symmetric and fully connected. Extreme dilution, although
it is not obviously in itsell more realistic, simplifies the dynamical equations and
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allows the straightforward study of dynamical as well as equilibrium effects. Strikingly,
however, the above-mentioned features of the Hopfield model are still retained. )

In this paper we shall introduce, in addition, another modification to neural net-
work modelling. From a physiological viewpoint, it is implausible that the mechanisms
for the strengthening and weakening of synaptic strengths are the same {6]. Thus we
shall study a dilute asymmetric network in which the bounded synaptic strengths
are stochastically modified during learning, but the probabilities of strengthening and
weakening are different. This is in contrast to the Hopfield—Parisi model [3] in which
the modification of synaptic strengths (within bounds) is AJ;; ~ €f'¢}* for the learning
of the puth pattern, irrespective of whether AJ;; strengthens or weakens the original

;j (1.e. whether AJ;; has the same or different sign as J;;). When the synapses are
more easily strengthened than weakened we can mtuntlvely call the system a stubborn
or extrovert network; otherwise it is termed stupid or introvert; and that with equal
likeliness for strengthening and weakening we call normal To avoid linguisiic ambi-
guities we shall call the three cases extrovert, introvert and normal, which describe
their tendencies towards stronger, weaker or normal synaptic strengths respectively.
In order to focus on the phenomenoclogical aspects of the model, we simplify the math-
ematical analysis by restricting the synaptic strengths to take the values +1 and 0.
Naively simple as it seems, the model already shows interesting features which have
puenomenologlca.l relevance. These features are also present in models with bounded
synapses taking a wider, or even continuocus, range of values [7].

The phenomenology concerned in this model is the study in experimental psychol-
ogy of working or short-term memory. The term working memory implies a system
with limited capacity, for the temporary holding and manipulation of information dur-
ing the performance of a range of cognitive tasks such as learning and retrieval [8].
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of items presented serially [9]. It is found that the probability of recalling an item
depends on the serial presentation position. The increased probability of recall for the
earliest learned items is called the primacy effect, whereas the recency effect corre-
sponds to the increased probability of recall for the latest learned items.

Starting from tabula rasa (i.e. all the synaptic strengths are initialized to zero),

we gshall demanstrate that introvert networks exhibit recency but not nrlmar‘v pﬂ‘nr-fe
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which is qualitatively similar to the Hopfield—Parisi model. On the other ha.nd ex-
trovert networks behave differently. The fabula rasa initial condition ensures that the
earliest patterns are always learned by the strengthening of the synapses, since no
previous information is present. Later patterns are then less well embedded in the
network because they may require changes in the direction that weakens the synapses,
which are more difficult in extrovert networks. Thus, on top of the usual fnrn‘efhncr
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mechanism due to pattern interference, extrovertness contnbutes another factor to-
wards the deterioration of memory span when patterns are learned sequentially. As
we shall see, these two factors are responsible for the presence of both primacy and
recency effects in extrovert networks. We shall also demonstrate the inherent limited
capacity of our three-state model, with patterns stored only temporarily as learning
proceeds. Our model is thus a plausible candidate for a working memory, although its
relationship to experimental psychology is far from straightforward, as is later brought
out.

It is important to stress, however, the dependence of the primacy effect on the
initial configuration of the synaptic strengths. A pre-requisite for the presence of
primacy is that the initial distribution of synaptic strengths should be different from
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the asymptotic distribution after a large number of patterns have been learned. Fur-
thermore, the initial distribution should be such as to enable a pattern to be better
embedded in the network as compared with embedding it in the asymptotic distribu-
tion. This implies that for an extrovert network to exhibit primacy it must have an
initial distribution weighted more towards the centre than the asymptotic distribution.
In particular for the three-state model we study here, this requires that a sufficiently
large fraction of the synaptic strengths should be initialized to zero. This dependence
on the initial configuration is also studied in this work.

2. The model

The model we consider has a structure analagous to the diluted asymmetric Hopfield
model introduced by Derrida et al [5], but with differently chosen synaptic weights.
It consists of a network of N binary neurons o; = 1 (z = 1,..., N) with synaptic
interactions chosen as follows. Independently for each (ij) permutation, a synapse
from j to i is present with a small probability, C/N, so that the average number of
neurons feeding any other is C'. Equivalently, the synaptic efficacy from j to i is given
by J;; = J;;C;;, where the C;; € {0,1} are independent parameters chosen at random
according to the distribution

o) = T8(Cis — 1)+ (1= CIN(Cyy) 1)

C is chosen so that € <« ln N and the limit ¥ — oo is taken in the analysis. This
restriction on the average number of connections ensures that in any finite number
of steps of the dynamics, any neuron almost never receive inputs from itself, even
indirectly. Correlations between the neurons are thus eliminated, and it is this sim-
plification that allows for an exact solution of the dynamics.

The synapses that are present are restricted to take one of the values +1 or 0.
Starting from febula rasa (i.e. all J;; are initialized to zero), random patterns {4},
{where £ denotes the value of neuron i for pattern p) are learned at the rate of one
pattern per unit learning time. Since the synapses can only take a finite number of
values, the system can only store a few patterns if all the synapses are updated during
the learning of a pattern. Thus each pattern is learned by randomly choosing only a
fraction f of the synapses, and stochastically updating the chosen synaptic strengths
J;; by an increment £f'¢}' = £1, except when such an increment is not allowed by the
synaptic bounds. The probabilities of updating are p. and p, if the increment ff‘{;"
has the same or opposite sign as the synaptic strength Jii respectively. Thus p_ and
p. are the registration (or strengthening) and correction (or weakening) probabilities.
In the present three-state model, p, effectively adjusts the likelihood of change from
the synaptic values 1, while p, modifies change from 0. If p_/p, < 1 the network
is termed extrovert, with synapses resisting change from the values +1, if p_/p. > 1
it is termed introvert, with synapses biased towards 0 and if p,/p, = 1 it is referred
to as normal. Each pattern of a particular sequence of patterns is then learned in
turn in this manner, thus determining the values of the synapses at any time. In
fact, as we show below, the properties of the network depend on (f,p.,p,) only in the
combinations fp., fp.. We find it convenient conceptually, however, to think in terms
of p_, p, ~ O(1) with any c-dependence contained in f.
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It is convenient to study the retrieval properties of this system by considering the
probability distribution of the synaptic strengths. Let P, P, P* be respectively the
probabilities of J;; being in the states +1, 0, ~1 after u patterns have been learned.
The probabilities before and after the learning of the uth pattern are related, when
£/'€ = 1 respectively, by the matrix equation

P(u); = [(1= DI+ fTL]P(s - 1) (2)
where the matrices T are given by

1 Pr 0 1—pc 0 0
T+= 0 l_pr P. T—= Pe l_pr 0
0 0 1-p, 0 5. 1

and P(p);; is the transpose of (P{, P{, P£).

For the retrieval stage we consider either synchronous or asynchronous dynam-
ics for the network [5], taking the post-synaptic potential thresholds to be zero and
ignoring synaptic noise, so that at retrieval time ¢ an updating event is defined by

o;(t + 1) = sign(h{t)) synchronous (3a)
or probabilistically with updating occuring with frequency A7~! according to
o;(t + Ar) = sign(h; (1)) asynchronous (3b)

where h;(t) is the local field, or post-synaptic potential, on neuron ¢ and is given by

N
h(t) = Z YR AUP (4)

We are mainly interested in the asymptotic retrieval behaviour of the system, so both
synchronous and asynchronous dynamics would give the same result in the present
model.

We consider the time evolution of a state of the network having a macrescopic
overlap m with a specified pattern p

N
1
m,(t) = 5 > &lai(t) (5)
=1
and a microscopic overlap with all other stored patterns. As shown by Derrida and
Nadal {10], m(t) asymptotically approaches the fixed point m* of the equation

m;, = g(m;) (6)
where g is given in the limit of C — oo (but still with C' < InN) by
m
=erf{ — 7
glm) = er (m,,) (7)

where A, is the noise-to-signal ratio

D — A2 1/2
A, = (Luz A ®)
# CA2
with A, and D, given by the following averages over the randomly stored patterns:
A, = (EFel ;) D, ={J%). (9)

Determination of the storage properties of the network then follows from an analysis
of equation (6).
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3. Solution

3.1. Derivation of fized poini equation

Consider the retrieval properties of the (r+ 1)th pattern when s further patterns have
been learned (i.e. at the learning time T' = r 4+ 1 4+ 5). We proceed to calculate the
probability distribution of the J;; for such a sequence of patterns, and hence determine
equation (6), by considering the average effects of the first r and last s patterns, and
the explicit effect of the marked (r + 1)th pattern. These averages are applicable as
the strong dilution present in the model ensures that correlations between the J;; can
effectively be ignored.

Training the first # patterns starting from labula rase, and averaging over the
random choice of those patterns, gives the probability distribution of the J;; from
equation (2) as

. (0 0
Py = [(1—f)|+f(5—';~1:)] 1l=1{1]. (10)
0 0

Here T is defined as a 3 x 3 matrix relating the probability distributions at adjacent

stages of the training procedure. Thus PS;) can be expressed as a linear combination

of the (unnormalized) eigenvectors e,, e,, e; of T, where

1 1 1 -1

ee=——=I| R e,=1| 0 e, =| 2

2+R Y\, -1 -1
with elgenvaluesof 1,1— %RE and 1— %(2+R)E respectively, R=p./p. and E S fp,.
As we shall see, the e, mode is associated with the evolution of the signal strength
of the marked pattern, and the e; mode with the evolution of the synaptic weight
distribution due to the unmarked patterns. We shall call E the learning intensity,
since it measures the intensity with which patterns are stored in the direction of
strengthening the synapses. Equivalently, the network behaviour depends on both the
registration and correction intensities E. = fp, and E_ = fp_ respectively; here we
have chosen £ = E, and R = E_/E_ = p_/p, as independent variables to facilitate
discussion. Furthermore, we shall consider fp_, fp, ~ O(1/+/C), for reasons to become

evident later.

For sufficiently small fp_, fp,, we may easily evaluate PE;-) by using the approxi-
mation (14z)" = exp(rz). Then introducing the (r+ 1)th pattern into the probability
distribution explicitly, and considering the effect of the next s patterns in a similar
way to the first r patterns, we find that

. E
PEJ'-""H ) = e + E;+1€;;+1 _....___.2(2 o) {2R + (2 — R)exp[—%(2+ R)Er]} exp(— REs)e,

+ ( 1 __ —g—) exp[—5(2+ R)E(r + s)je; . {11)
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D, =(101) P§;+1+s) - 2—fﬁ{l —exp[—1(2+ R)E(r + 5)]} + O(E) (13)
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and the noise-to-signal ratio in (8) becomes

/22 + R){1 - exp[~3(2 + R)E(r + 8]}
= VCE{2R+ (2 - R) expl-1(2+ R)Er]) exp(~LiREs) |

(14)

Substituting A, into equation (6) gives the fixed point equation which determines
the retrieval behavicur of the network.

Before beginning the formal analysis it is worth noting the terms that will deter-
mine the broad nature of the network’s storage properties. We see that the noise-to-
signal ratio is dependent on three factors. The signal term A, of the marked pattern
decays exponentially with s on a ‘time’ scale of 2/RE, since it is associated with the
e, mode. This decay is due to the interfering effect of the subsequently stored patterns
when the synaptic strengths are bounded. {Note that the signal term will not decay
when the synapses are unhounded; all the stored patterns are simply confused when
the storage capacity is reached, constituting the so-called ‘memory catastrophe’.)

Secondly, the pre-factor of the signal term, {2R+(2—R) exp[—1(2+R)Er]}/(2+R),
reflects how favourable the synaptic distribution, at the instant immediately before
the marked pattern is learned, is for the marked pattern to be embedded. Its value
evolves from 1 to 2R/(2 + R) on a ‘time’ scale of 2/(2+ R)E as learning proceeds,
For extrovert networks (R < 1), this means that earlier learned patierns are better
embedded than later ones, because earlier learned patterns result in more synaptic
updating when the synaptic distribution is weighted more towards the centre.

Finally, the noise term D_,, grows with the total number of stored patterns. Its
value increases from 0 to its maximum value, again on a time scale of 2/(2 + R)E
assoclated with the e, mode. It is the non-trivial interplay of these three factors that
gives rise to the novel effects that are outlined below.

3.2, Analysis of fized point equation

We shall first consider the memory lifetime L(r) when r patterns have previously been
presented (i.e. of the (r + 1)th) pattern. This is given by the value of s when the
pattern is just forgotten (no longer retrievable), and hence by considering the solutions
of equation (6) in the limit m},, — 0 (i.e. the solutions of ¢’(0) = 1). Thus L(r) is
given by the value of s for which A, = /2/#. This is equivalent to the equation

B V1= exp[-3@+ R)B(r + L(r)))
E* 7 {14 [(2— R)/2R)exp[~1(2 + R)Er]} exp(— s REL(r))

g

(13)

where

E* = V?‘+

In the limit of r — oo, that is once the memory has been saturated, the (r 4+ 1)th
pattern is forgotten after an additional L{co) patterns have been stored, where

L{o0) = —ln(w) (16)
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L{oc) is thus the asymptotic storage capacity of the network. It reaches its maximum
at E = eE*, and the maximum storage capacity is O(v/C).

This storage capacity is clearly drastically reduced in comparison to the more
usual value of O(C) for other dilute networks. This is not simply a consequence
of the synapses taking only three values, but also of the sequential nature of the
training procedure for storing patterns. For example Sompolinsky [11] has considered
a comparable recursive network with fully connected synapses. In it the synapses
are unrestricted until they have been fully trained, after which they are clipped to
the values +1,0. The capacity is then of the same order as a model without such
restriction on the magnitude of the synapses. It does, however, suffer from the same
total collapse of memory beyond the critical capacity. What is surprising about our
model, however, is that the retrievable storage capacity is as high as it is, given the
degree to which information about earlier patterns is lost as new patterns are stored.
Furthermore, such limited capacity need not be regarded as restrictive as it is an
integral part of any model of working memory.

If we choose the intensity as a higher power of C than C~!/2, the capacity L(co)
is then smaller. For example E ~ Q(1), corresponding to f ~ O(1) for p,,p. ~ O(1},
would imply L{oo) ~ O(InC). This dependence on the learning intensity reflects
further the difference between sequential presentation to a bounded synapse system
and the effects of eventual clipping of synapses after presentation to an unbounded
system.

In the limit of » — 0 equation (15) reduces to

\/1 — exp[-L(2 + R)EL(0)]

E" [(2 + R)/2R]exp(~ L REL(0)) (17)

which determines the lifetime L{0) of the first learned pattern. Figure 1 plots the
rescaled lifetimes A = L/v/C of the first pattern and of any pattern stored after
the asymptotic capacity has been reached, agalnst the rescaled intensity ¢ = EVC
for a normal (R = 1) network. Clearly there is a critical value of the intensity,

(24 R)7/2R, below which the network fails to store any more than the first
few patterns, which are themselves lost as training continues, A similar critical value
of the intensity with which patterns are stored is seen in the work of Mézard et
al [5]. Note that the lifetimes first increase with ¢, reach their maxima and then
decrease. Thus, for sufficiently small E, the patterns are better embedded as the
intensity increases, but pattern interference degrades the lifetimes when the intensity
is excessive.

3.8. Above threshold infensity

We first consider the case ¢ > ¢*. For a fixed value of ¢, we plot in figure 2 the
lifetime of each pattern in the sequence as a function of the rescaled learning position
p = r//C for extrovert, normal and introvert networks (extremely introvert networks,
that is with R > 2, are discussed separately in section 3.5).

We see, for the cases considered here, that patterns learned at the start are re-
membered for longer than patterns learned later on, whose lifetime monotonically
decreases to a constant value. This is due to the increasing pattern interference as
learning proceeds, and is also observed in previous models [4, 10]. What is of particular
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Figure 1. Curve a gives the lifetime A = L//© of the first stored pattern as
a function of ¢, the intensity of storage, for R = 1. The lower curve b gives the
corresponding lifetime for a pattern stored after the memory has been saturated.
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Figure 2. The lifetime A Lf\/E for R = 0.5,1,2 and 5 {(curves a,b,c and
d respectively} is given as a function of p = r/fé at € = pe{R) = (0.75 +
0.5R~1}e /7 /(2 + R), which is arbitrarily chosen to ensure that the novel effects
are easily observable.

interest, however, is the rate of this decrease in pattern lifetime. We see by partially
differentiating equation (15) with respect to p, and evaluating at p = 0, that

2 _ 22-R)+(3R-2) exp[—£(2 4+ R)e}]
8|0 2R+ (2— R)expl-3(2+ R)e)]

(18)
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Clearly if R < 1 we see that 8A/8p| o < —1. Thus for an extrovert network the rate
at which the pattern lifetime decreases is faster than the rate at which new patterns
are stored, until we reach pattern p;, where 83/3p|, = —1. Here p, is given by

=3 +2R)E ln(2};23) . (19)

This ensures that, for a certain period within the training procedure, the patterns at
the start of the sequence may be stored for longer, and retrieved with a higher output
overlap than patterns in the middle, some of which may be entirely forgotten.

The extent of this effect, which we term the primacy effect, and its absence from a
normal or an extrovert network, is evident in figure 3. This indicates the stages of the
training procedure for which each pattern may be retrieved, as a patttern learned at
the rescaled time p is retrievable in the learning time interval r enclosed between the
curves + = p and r = p+ A(p). The positions p of the patterns still memorized by the
network at a learning time, say z, are determined by the segment of the horizontal
line 7 = z enclosed in the area bounded by the two curves.

Figure 3. The curves 7 = p + A{p) for R = 0.5,1 and 2 (a,b and ¢ respectively), at
€ = €qbs (R) and the line 7 = p, plotied against p.

As indicated by curves b and ¢ for normal and introvert networks (R > 1), all the
stored patterns are retrievable for 7 < A(0). The forgetting of patterns, starting from
the earliest learned ones, takes place when > A(0). The latest patterns are recallable.
We call this the recency effect, which is already observed in previous models [4, 10].
No primacy effect is present.

For extrovert networks (R < 1), curve a shows that all the stored patterns are
retrievable up to the learning time 7, = g, + A(p,). As learning proceeds further,
patterns in the middle positions around p, start to be forgotten. This continues until
the learning time A(0), when the first pattern is forgotten. Beyond A(0), only the
latest learned patterns are retrievable. The preferential retention of memory of the
earliest learned patterns between 1, and A(0) is the primacy effect.
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Even before forgetting sets in at the learning time 7, the primacy phenomenon
is already present in the quality of retrieval as a function of patterns presented from
the start of training, and persists up to the learning time A(0), when the first pattern
is forgotten and the primacy effect vanishes. These characteristics are indicated in
figure 4, which gives the retrieval quality of each pattern at several stages in the
training procedure.

1.0

09

08

07

0.6

m 05

0.4

03

0.2

01

4

Figure 4. The retrieval overlap m as a function of p = +/\/C at € = ¢p,(R)
and for R = 0.25, at a stage in the training procedure (a,b) between v = pp and
T = 79 = po+ AMeo), {c) at 7 = 7y and (d) between 7 = 79 and 7 = A(0), respectively.
The end points of each curve indicate the learning position of the last learned pattern;
their envelope is given by the monotonically decreasing dotted line.

We note that the primacy effect is dominant for learning times 7 below p;, so
that the retrieval quality of a pattern is monotonically decreasing with its position p.
Recency effects set in, for 7 greater than p,y, when the retrieval quality monotonically
increases thereafter. The pattern position for this onset of recency impravement is
independent of 7, and is always at p;.

Finally we derive the rescaled storage capacity o = p/ V/C, where p is the number
of retrievable patterns stored in the network, as a function of the learning time. For
an extrovert network there are three regions.

(i) 0 < 7 < 7; each stored pattern can be retrieved until 7, when forgetting first
starts, and hence o = 7.

(ii) 7y < 7 < A(0); between these times the patterns from positions p. to p,
are forgotten, where p. and p, are the two solutions of 7 = p + A(p). Hence o =
T — py, + p.. This is the region where both primacy and recency effects are present.

(iii) MO) < 7; after A(D) only the recency effect is present with p, patterns forgot-
ten, where p, is the single solution of r = p + A(p), and all later patterns retrievable.
Hence o = r — p,.

The storage capacity a is plotted as curve a of figure 5; note the presence of three
distinct regions. Figure 5 also shows the corresponding storage capacity for the normal
and introvert networks, for which only two regions exist as no primacy effect is present.
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Figure 5. The storage capacity o = p/\/C, as a function of T, at € = €., (R), for
R =10.25,1,2 and 5 (curves a,b,c and 4 respectively).

Note the similarity of these curves b and ¢ in figure 5 with those of [5] and [10].

3.4. Below threshold tntensily

Next we discuss the case of an extrovert network when € < €*. In this case patterns
can be learned at the initial stage, but all of them will be forgotten as learning pro-
ceeds, until eventually no patterns can be learned by the system. Hence no extended
memory is possible. However, even in this regime, an extrovert network shows inter-
esting behaviour, as demonstrated in figure 6(b)—(d); curve a is for ¢ > ¢* and is for
comparison.

For ¢ just below ¢ (curve b), the network exhibits both primacy and recency
effects, although the recency effect in this case is restricted, and pafterns cannot be
learned indefinitely. As learning proceeds, the patterns in some middle position are
the first ones to be forgotten, and the latest learned ones are the last to be forgotten.
We call this a stronger recency (SR) regime, as the recency effect persists longer than
the primacy effect.

For lower values of ¢ (curve ¢), the network continues to exhibit both primacy
and (restricted) recency effects. Forgetting still starts in some middle position, but
the earliest learned patterns are the last ones to be forgotten. We thus call this a
stronger primacy (SP) regime, as the primacy effect now persists longer than recency,
For still lower values of ¢ (curve d), the network exhibits primacy effect only (PO).
Forgetting starts from the latest learned patterns, until eventually the earliest ones
are forgotten. These three regimes for different values of ¢, along with the region of
extended memory (EM) for € > €*, are shown in figure 7.

In the limit of extremely small ¢, patterns are still faintly memorized in the diluted
model. More interestingly, the slope dA/dp approaches —1 for all the memorized
patterns. This implies that all the patterns are forgotten almost simultaneously at the
same learning time, thus recovering the situation of memory catastrophe reminiscent
of the Hopfield network without synaptic bounds. Indeed, when ¢ is small, updating
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02
] L L | R H 1 L
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Figure 6. The curves 7 = p + A{p) for ¢ = 3.0,1.7,1.2 and 0.5 (curves a,b,c and d
respectively), with values of ¢ chosen so a8 to highlight the corresponding regimes of
extended memory {EM), stronger recency (SR), stronger primacy (sr), and primacy
only (P0)) when R = 0.8, and the line 7 = p, plotted against p.
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Figure 7. Memorv behaviour in the space of the ratio R and intensity ¢, showing
the regimes of extended memory (EM), stronger recency (SR), stronger primacy {SP)
and primacy only {P0O).

events for each synapse becomne very sparse during the period when learning takes
place, and the effects of synaptic bounds become vanishing. This causes the learning
behaviour of the network to approach that of the unbounded network.
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3.5, Extremely extrovert networks

The case of very extrovert networks deserves special attention. When R << 1, equa-
tion (15) can be modified into

¢ JTmepep
//2 T exp(—ep— éRE)‘) ’ (20)

As before, the system does not exhibit extended memory below the threshold intensity
¢t ~ /m{2/R. However, the system has interesting behaviour even in this regime,
provided that ¢ > (/x/2. Here the lifetime in the early and later learning stages
behave differently. In the early learning stage, patterns are efficiently embedded, and
the extreme resilience against weakening the synapses preserves the learned patterns

in subsequent learning time. Thus the lifetimes are long and ) ~ O(Re)™!. Precisely,

A= %(1"[\/;%] —cp) .

The lifetime decay is caused by the increasing ineffieciency in embedding later learned
patterns, and has a slope of —2/R.

When p ~ ¢ !ln(e/\/n/2), the network behaviour crosses over to a regime of
short lifetime, where A ~ O(¢)~!. Here the synaptic weights are already fixed by
the network’s previous learning experience, and the extreme resistance to weaken the
synapses prevents the efficient embedding of newly learned patterns. Thus

(21)

A = —(1/€)In[exp(ep) — (2¢2/7) exp(—e¢p)] - (22)

The lifetime decay has a slope of O(1), meaning that the patterns learned at this stage
are forgotten in a nearly catastrophic way, leaving the earlier learned patterns with a
much fonger span. Paiterns with positions p 2 p(() cannot be learned, where

p(O):c_lln[%(l+\/1+8—j>] : (23)

When R = 0 exactly, patterns with positions p < p{oo) have infinite lifetimes,
where

ploo) = ¢~ In(e//7/2) (24)

and patterns with positions p(oo) < p < p(0) have finite lifetimes. This means
that the network exhibits permanent primacy, similar to models of long-term mem-
ories [10,12,13]. The long lifetimes of the early learning stage discussed above can
therefore be considered as a precursor of permanent primacy. Permanent primacy is
previously observed in the nonlinear model of Burgess ef al [14,15]; the existence of

the ‘point of no return’ therein is the equivalent of our absolute extrovertness R = 0.
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3.6. Exiremely introvert networks

Novel effects are also revealed for sufficiently introvert networks. We see in curve d of
figure 2 that the pattern lifetime steadily increases as patterns are learned, towards
its asymptotic value. The maximum storage capacity is thus no longer given when
forgetting starts, but is instead effectively given when a large number of patterns have
been stored, as indicated in the lowest curve of figure 5. A simple analysis of equation
(15) reveals that this new behaviour is present only if R > 2 and the intensity ¢ is
strong enough. Indeed, for an introvert network, information is better embedded when
the synaptic distribution is weighted away from the centre. Starting from fabula rasa,
this condition can only be attained at a later stage of the training procedure, thus
accounting for the longer lifetimes of the latest learned patterns. This interpretation
is apparent in the change of behaviour in the signal term in (12) when R becomes
greater than 2.

4. The origin of the primacy and recency effects

As an alternative to starting the training procedure from tabula rasa we now consider
starting from synapses with an arbitrary symmetric initial probability distribution
having a fraction pq of zero synapses, with an aim to analysing how this new condition
modifies the primacy and recency effects.

Clearly the asymptotic distribution of the synapses after a large number of patterns
have been stored will remain the same whatever the starting conditions. It is also
manifest that if we started from this asymptotic distribution no primacy effect would
appear as this would be equivalent to storing patterns in the limit r — oo of section 2,
where no primacy effect is present. This would be the case no matter how extrovert
the network is,

Performing an analysis similar to that of section 3, we find that the condition
for the appearance of the primacy effect, namely that the rate at which the pattern
lifetime decreases for the earlier patterns is faster than the rate at which new patterns
are stored (i.e. 8A/8p|,., < —1), is given by

2py
25
=T+ p, (25)

thus ensuring the onset of the primacy effect only if the network is sufficiently extro-
vert. Alternatively, for a fixed value of R, the initial distribution p, for the onset of
primacy has to be greater than R/(2~ R}, which is in turn greater than the equilibrium
distribution R/(2 + R).

Clearly the primacy effect is dependent on the proportion of synapses that are set
to 0 at the start of training. If this is greater than the asymptotic proportion after a
large number of patterns have been stored then, for a suitably extrovert network, the
primacy effect is present. This may be accounted for by noting that in an extrovert
network the synapses resist change from the values +1 and thus the earliest learned
patterns will determine the signs of the initially zero-valued synapses whose change
are resisted during the learning of later patterns. These earliest patterns are thus
remembered for longer than they would be otherwise. This, when combined with the
decrease in pattern lifetime due to the noise induced as more patterns are stored,
accounts for the origin of the primacy effect in our model.



Neural nelwork model of working memory ' 1133

The source of the recency effect is apparent in that the nature of the training
procedure ensures that information about the earlier patterns is gradually lost, with
the most recently learned patterns better embedded among the values of the synapses.

5. Conclusion

We have studied a model of working memory with variable registration and correction
prebabilities, and have found that extrovert networks (in which registration is stronger
than correction) exhibit both primacy and recency effects during sequential learnin
of patterns, when the learning intensity is sufficiently strong (on a scale of order 1 /\/ﬁ
where C' is the connectivity) and the initial distribution of synaptic strengths is bi-
ased towards weakness compared with the asymptotic limit. On the other hand, only
recency effects are present in normal and introvert networks (respectively with equal
registration and correction probabilities and correction diminished). The exhibition
of both primacy and recency effects for a learning session parallels psychological ex-
periments on working memories.

When compared with our model, most of the previous models exhibit either mem-
ory catastrophe beyond storage capacity [2], or purely recency eflects [3,4]. There
have also been models in which purely ptimacy effects are present. An example is the
‘irreversible bounds’ (or ‘absorbing bounds’) model [10,12,13], in which the synaptic
strengths stick to the bounds once they are reached. This model has a limited memory
storage, in which learning of new patterns is impossible after a sufficient number of
patterns have been learned sequentially, thus it serves as a plausible model for long-
term memory. In fact, it is equivalent to the extremely extrovert limit (R — 0) in our
model. Another example is the nonlinear model by van Hemmen et al [16], in which
the learning rule is defined by some nonlinear function ¢, so that

T = plegtel + IV (26)

In the case (¢) considered in [16], only the primacy effect is present, and it can be
shown that the partlcular form of the functlon ¢ has the property that patterns are
better embedded in the strengthening than the weakening direction. It is apparent
that in these models, the primacy effect is related to the extrovertness inherent in the
synaptic learning rules. By varying the ratio R = p_/p,, our medel incorporates these
models as special cases and, furthermore, extends to models with both primacy and
recency effects present. Sequential learning in general nonlinear models, in which both
primacy and recency effects are present, are also currently being studied by Burgess
et al [14,15].

Concerning the variation of the storage capacity during sequential learning, pre-
vious studies have consistently found that the storage capacity rises linearly with
learning time, reaches a maximum and then approaches an asymptotic level (for ex-
tended memory) or drops to zero (for restricted memory). Our study has revealed a
much wider vartety of behaviour when the ratio R and the intensity E are varied. In
the primacy regime we have found that the storage capacity has two kinks instead of
one, one corresponding to the moment when forgetting starts, and the other to the
moment when the earliest or the latest learned patterns are all forgotten. In the re-
cency regime, we also found instances in which the storage capacity further increases
after the moment when forgetting starts, and so we see that the kink does not always
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give the maximum storage capacity. By varying also the initial synaptic distribution,
other behaviours are likely to be revealed.

We have also emphasized the relevance of a favourable initial synaptic distribution
to the occurence of primacy. For symmetric distributions, we have shown that the
initial distribution has to be comfortably distinct from the equilibrium distribution,
in such a way that the earliest patterns are embedded in the synapses with sufficient
advantages over the latter ones. In the three-state model, this means that the initial
fraction of zero synapses for the occurence of primacy should not merely be greater
than the equilibrium fraction R/(2 + R), but greater than R/(2 — R) as well.

The importance of favourable initial distributions distinct from the equilibrium
distribution of synaptic strengths leads to an interesting issue. If we take a neural
network which has undergone learning for a long time, its synaptic strengths will
reach the equilibrium distribution, and the system will show no primacy behaviour in
a new but equivalent learning exercise. Surely some discontinuity in the subsequent
synaptic strength distribution is required to demarcate the starting of a new learning
session. A possible mechanism for a favourable resetting of the distribution is that the
synaptic strengths relax randomly to zero when learning stops. Another possibility
is that the necessary discontinuity in the learning environment is inherent when a
learning session consists of correlated patterns whose correlations are different from
the previous ones. These ideas deserve further investigation.

Alternative explanations of the primacy effect exist. It is possible that the net-
work has a high ‘attention’ at the beginning of a learning session, and thus the earliest
learned patterns are embedded with a stronger intensity E. As learning proceeds, the
attention is lowered and the intensity approaches an asymptotic value [17). The rel-
evance to psychological phenomena of this attention theory, as well as the extrovert
theory proposed here and in [14,15], has to be subject to comparison with differenti-
ating psychological experiments. While both theories may eventually be relevant to
psychological phenomena, it would be interesting to predict, for example, the con-
sequences of presenting uncorrelated patterns among a majority of correlated ones
during a learning session, while keeping the attention constant. Another current com-
mon explanation within experimental psychology for the primacy and recency effects
is through an interaction of short- and long-term memory [9]. This interaction has
been incorporated into a neural network that has been outlined and simulated by
Schreter and Pfeifer in [18].

There are other more subtle aspects of the psychological phenomena of primacy
and recency. One experimental result can be termed the quenching of primacy [9].
In this experiment, the subject is required to rehearse an item several times before
the next one is presented. In this case, no primacy effect is present. The analogue of
rehearsing in our model lies in increasing the learning intensity E. Roughly speaking,
we observe similar consequences. For the extrovert network, we see that primacy
effects are more dominant for low-intensity learning, whereas recency effects are more
dominant for high-intensity learning. The temporal extent of the primacy effect is
determined, roughly speaking, by the magnitude of the position py, which is inversely
proportional to the intensity E according to equation (19). For sufficiently introvert
networks, we even witness an increasing lifetime with pattern position for sufficiently
high intensity, implying the opposite of primacy. However, we have not found any
extrovert network which has both primacy and recency effects at low intensity but
has primacy behaviour completely washed out at high intensity.

Another experiment can be termed the quenching of recency [9]. In this experi-
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ment, the subject is required to perform some interfering task immediately after the
learning session. Afterwards, only primacy but no recency effect is present. If we as-
sume that the interfering task corresponds to further presentation of random patterns
in our model, this would correspond to the observation that out of all the patterns re-
callable up to a learning time p, only the first few are retrievable at a time later than p.
This is clearly observed in comparing curves b and d in figure 4: the retrieval overlaps
of patterns on curve b become 0 on the corresponding portion of curve d, except for
those learned earliest, and surely recency is absent. However, psychology experiments
imply that the pattern position p; of minimum overlap, i.e. the position for the onset
of recency improvement, should shift in the increasing direction as learning proceeds,
and this more subtle aspect is not observed in the present model.

QOur model is of course idealized. The detailed updating mechanism need not be
restricted ta the stochastic Hebbian one we have chosen. nor need the svnapses be

LI IR 2% 2LULLGRLIL I2TLMAll SYL I VL LAILOTIL, il LICLARD A% D LiGpioba

discrete [7]. However, we believe that our simple study demonstrates that bounded
synapses, with different probabilities for increase and decrease of their magnitudes on
learning, are likely to be key ingredients in any self-contained model of short-term
memory.
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